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1. I N T R O D U C T I O N  

One of  the questions addressed in research on cellular automata  is that 
of  determining entropic properties for any given automaton.  As with many 
other questions in recent cellular automata  studies, this was initiated by 
Wolfram (1983), who provided formulas for certain automata defined over 
Z2. Also, Martin et aL (1984), Willson (1987a, b), and others have treated 
cellular automaton evolutions from a statistical mechanical  point of  view, 
and have computed similar formulas for the entropy of certain examplary 
automata,  showing that the entropy decreases over time to a minimum. 
Discussions of  entropy have also occurred in Vollmar's (1982) treatment 
of  the efficient of  polyautomata,  and in Grassberger 's  (1986) paper  on 
complexity measures for cellular automata.  One interesting point which has 
arisen is a result of  the demonstrat ion by Lind (1984) that additive automata  
defined over infinite lattices do not have the entropy-decreasing properties 
of  finite automata.  

The purpose of this paper  is to derive entropy formulas for all nearest 
neighbor additive cellular automata  defined over Zp, where p is prime, to 
indicate which finite automata  do and which do not decrease entropy, and 
to explain the reason that infinite automata  do not decrease entropy. 

Section 2 presents the general theory of  nearest neighbor additive 
automata,  formalized in terms of linear operators on a state space. Section 
3 determines entropic properties of  the automata  studied in Section 2 in 
terms of properties of  their defining operators. Section 4 discusses embed- 
dings of  finite automata  in infinite automata  and shows why no infinite 
automata  have the entropy-decreasing property. 
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2. O P E R A T O R  A P P R O A C H  TO C E L L U L A R  A U T O M A T A  

Let p be prime. A one-dimensional finite cellular automaton over Zp 
is represented as a set of  n sites located on a circle. Values at each site are 
chosen f rom Zp according to an evolution rule which depends only on 
current site values. I f  the value at site i at time t + 1 depends only on values 
at sites i -  1, i, and i +  1 at t ime t, the automaton follows a nearest neighbor 
rule. The set of  p~ possible automaton states is denoted E ,  and the 
automaton evolution rule is naturally represented as an operator Q: E,  -> En 
(Voorhees, 1988). The automaton is denoted (Q, E,) .  If, for all p. /~' in 
E,  Q(/~ +/~')  = Q ( p ) +  Q(/~'), the automaton is additive. 

If/~, is the value at site i for state/~, it is called the ith component  of  
~. The general component  representation for an additive nearest neighbor 
operator  Q is 

[Q(t*)],  = x~,_l +y~ i  + z/~,+l (2.1) 

where x, y, z take values in Z v and all sums and products are reduced 
modulo p, while all site indices are reduced modulo n. Thus the set 
{ ( x , y ,  z)lx,  y, z in Z,} classifies all nearest neighbor additive cellular 
automata  over Zp. There are p3 distinct operators defined by (2.1). 

I f  I is the identity on En while cr -~ and o" are, respectively, right and 
left shift operators defined by 

[~0.)], =~,+, 
(2.2) 

[~-'(~)], = t * ,  , 

then (2.1) is equivalent to the operator equation 

Q = xo --l  + y I  + zcr (2.3) 

so that 

r + s ~ k  

Q k =  E T~k+l)x~Y k . . . .  , ~ - r  (2.4) 
r,s =0  

where the T ~  +1) are the trinomial coefficients reduced modulo p. In com- 
ponent  form (2.4) becomes 

r + s < k  

[Qk(/~)] ,=  Z T~+'~x~Y k . . . . .  z*/~,-r+, (2.5) 
r,s =0  

Table I lists all nearest neighbor additive cellular automata for p = 2. In 
Table II a functional classification of nearest neighbor additive cellular 
automata  is given and notation is introduced. 

For binomial automata  the trinomial coefficients are replaced by the 
binomial coefficients II} k§ drawn from the mod(p )  Pascal triangle. The 
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Table  L Addi t ive  Opera tors  for  p = 2 

(x, y, z) Opera to r  C o m p o n e n t  fo rm 

(0,0,0) 0* [0*(t~)], = 0 
( 1 , 0 , 0 )  o--I [o--10z)] i  = /z i_  1 
(0, 1, 0) I [ l ( t t ) ]~  =/x,  
(o, 0, 1) o- [o-(~)], = m+l 
( 1 , 1 , 0 )  D - = I + o - - '  [D- ( t~ ) ] i  = ,u,i + pq_, 
(0, 1, 1) D = l + o -  [D( /z ) ] ,  =/x~ + tz,+ I 
(1 ,0,  1) 6 = o - + o  "-1 [ ~ ( t x ) ] i = t z i _ l + t z i +  1 

( 1 , 1 , 1 )  A =  o-+ I + o -  -1 [A(l~)]i=txi_~+t.Li+l~i+ 1 

operator  Q a lso  has  a representa t ion  as an  n • n matrix:  (!zooo 
y z 0 0 " ' "  0 

Q * =  x y z 0 " "  0 

0 0 0 0 ' ' '  x y 

(2.6) 

This  is a c i rcu lant  matr ix  for w h i c h  the f o l l o w i n g  results  are relevant:  

Theorem 1 ( B e l l m a n ,  1960) .  Let A = c i r c ( a o , . . . ,  a , - 1 )  be  a n y  n x n 
c i r c u l a n t  ma t r ix .  T h e n  the  e i g e n v e c t o r s  o f  A are  

I too 

~ . . . , e, = 2 ,  s = O, 1, n (2.7) 

t ~ ( n - - l )  s 

w h e r e  to = e 2~-i/n. 

F u r t h e r ,  t he  e i g e n v a l u e s  o f  A are  
n - - I  

akca.~ , s = 0 , 1 , . . . , n - - 1  
k = 0  

(2.8) 

Table II. Func t iona l  Classif icat ion o f  Addi t ive  A u t o m a t a  

A. E lemen ta ry  a u t o m a t a :  (x, 0, 0), (0, y, 0), and  (0, 0, z) 
1. N o n s y m m e t r i c :  zo-, xo- -~ 
2. Symmetr ic :  371 

B. Binomial ly  d e t e r m i n e d  au tomata :  (x, y, 0), (0, y, z), and  (x, 0, z) 
1. N o n s y m m e t r i c :  D(x,y) = y l  + xo-, D~..-) = y l  + zo- -1 

2. Symmetr ic :  6(.~,..) = xo- + zo- -~ 
C. Tr inomia l  au toma ta :  (x, y, z) 

1. Symmetr ic :  A(~.~,_) = xo- + y l  + zo-- 
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Substitution in (2.8) shows that the eigenvalues of Q* are given by the 
expression As = y + z t o  s + x t o ~ " - l ) s  = x t o  - s  + y + z t a  s. This provides a direct 
connection with the algebraic approach of Martin e t  al. (1984). In that 
paper each state/z  of E,  is represented by the polynomial 

/z(t) = ~ /z,t'-' (2.9) 
i=1 

while operators are represented as dipolynomials Q ( t ) = x t - ~ + y + z t .  In 
this representation automata evolution is generated by multiplication in a 
ring of polynomials: /z (t + 1) = Q(t)/x (t) with coefficients reduced modulo 
p and powers of t resolved modulo n. If the real variable t is replaced by 
~ ,  (2.9) becomes a cyclotomic polynomial in which the mod(n) requirement 
is automatically satisfied since ~"  = 1. The cyclotomic polynomial Q(t~) is, 
by (2.8), just A ~--the second eigenvalue of the matrix Q*. Since the mapping 
Q * ~  Q(~)  is a ring isomorphism (Davis, 1979), the formalism of Martin 
e t  al. is a particular representation, in terms of real polynomial rings, of 
the more general operator approach presented in this paper. The advantages 
of the more general formalism are that it connects directly with forms of 
thought found in classical and quantum physics, and that it objectifies 
automata transition rules as abstract objects which can be formally manipu- 
lated across a varity of different representations (e.g., in component form, 
as circulant matrices, as cyclotomic.--or other--polynomials,  etc.) 

The notation D(x,y), O(y,z), ~(x,z), and A(x,y,z ) introduced in Table II 
will be used to denote operators corresponding, respectively, to (x, y, 0), 
(0, y, z), (x, 0, z), and (x, y, z). 

An automaton (Q, En) can be geometrically represented by a state 
transition diagram. This is a directed graph in which each vertex represents 
an element of E,  and there is an edge directed from a vertex A to a vertex 
B if and only if the corresponding states /ZA and /x~ satisfy Q(tXA) = IZB. 

In this case ].L A is a predecessor of/xB. A state may have more than one 
predecessor, but all states map to a single successor. That is, each vertex 
of the state transition diagram may have many lines directed into it, but 
has only a single line directed out. 

3. PREDECESSOR STATES AND ENTROPY 

In this section the numbers of predecessor states for all finite nearest 
neighbor additive cellular automata are computed and the entropies o f  these 
automata as a function of time (i.e., iteration step) are derived. This is a 
generalization of work carried out by Wolfram (1983) and Martin e t  al. 

(1984). The in degree of  a vertex of the state transition diagram for an 
automaton (Q, E,)  is defined as the number of  edges directed into that 
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vertex. The out degree, the number of edges directed out of a vertex, is 
always 1. Martin et al. prove the following. 

L e m m a  1. Trees rooted at all vertices of all cycles of the state transition 
diagram of an additive cellular automaton are isomorphic to the tree 
rooted at 0. 

L e m m a  2. Two states of an additive automaton (Q, En) map to the 
same state after a single iteration if and only if they differ by a state which 
maps to 0. 

An immediate consequence of these two lemmas is the following. 

L e m m a  3. Let (Q, En) be any additive automaton. The in degrees of 
all vertices with predecessors in the state transition diagram are equal, 
taking Q(0) = 0 as contributing to the in degree of 0. 

As a result of this, the in degree of states having predecessors is an 
invarient for an automaton, and can be computed by counting the number 
of solutions to the homogeneous equation Q( tz )=0 .  Since every state of 
an elementary automaton is on a cycle, the in degree for these automata is 
1. For binomial and trinomial automata the case is more interesting. 

For automata (D(y,z), En) the equation D(y, z)(,t/,)= 0 is written 

y/z1 + z/~2 = 0 

y/z2 + z/x3 = 0 

(3.1) 

y/zn_l + z#n = 0 

y/zn + z/z1 = 0 

These equations have solution ~i = (p  - z-~y)i-ltL1 with the constraint 
(p - z ly)n = 1 mod(p).  I f  this constraint is satisfied, there are p possible 
solutions corresponding to /x~ = 0, 1, 2 , . . . ,  p - 1. If  it is not satisfied, the 
only solution is/z = 0. 

Noting the symmetry between D~y,z) and D~-~, y), we have expressions 
for the in degree of both of  these automata: 

Theorem 2. The in degree of  states of  (D~y,z), En) and (D(x,y), En) is 
1 unless ( p - - z - ~ y )  n =--- 1 mod(p)  [respectively, ( p - x - ~ y )  n -= 1 rood(p)],  in 
which case it is p. 

Corollary 2a. If  p =2,  the in degrees of (D, En) and (D , En) are 
always 2. 

Corollary 2b. The in degrees of (D(y,p_y), En) and (D~-p_y.y), E.)  are 
always p. 
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Proof We cons ide r  (D(y,p_y), E,).  For  this case  z = p - y .  Let p -  
(p _ y ) - l  y = K. Then p (p  - y )  - y  = K (p - y),  which impl ies  that  - y  = - K y ,  
or  K = 1 m o d ( p ) .  �9 

~(~) 
Wri t ing  out  ~x ,z )=  0 gives the set o f  equa t ions  

x/e, + z/e2 = 0 

x/e~ + z/e3 = 0 

�9 . .  (3.2) 

x/e._2 + z/e~ = 0 

x/e,_l  + z/e~ = 0 

I f  n is even, the so lu t ions  o f  these equa t ions  are  

/e2i = (P - z-lx)i- l /e2,  i = 1 , . . . ,  n /2  
(3.3) 

/eZi-l= ( P - Z  lX)i-l/el, i= 1 , . . . ,  n /2  

with the cons t ra in t  ( p - z - ~ x )  "= 1 m o d ( p ) .  I f  this  cons t ra in t  is satisfied,  
there  are  p2 so lu t ions  a n d  i f  it is not  sat isf ied,  0 is the  on ly  solut ion.  I f  n 
is odd ,  the  so lu t ion  o f  (3.2) is given in terms o f / e l  only:  

/ e2 i - - I  ~-~ ( P  - -  Z - I x ) i - - I / e l  
(3.4) 

/e2i = ( P - Z - l X )  i+~n 1~/2/el 

subjec t  to  the  same cons t ra in t  as in the n-even case. This is s u m m a r i z e d  in 
the  fo l lowing  result .  

Theorem 3. I f  n is even,  the  a u t o m a t o n  (6(x,z~, E , )  will  have in degree  
p2 or  1, and  i f  n is odd ,  the  in degree  will be p or  1, in bo th  cases d e p e n d i n g  
on whe the r  or  not  (p - z-~x)" -= 1 m o d ( p ) .  

Corollary 3a (Theo rem 3.2 o f  Mar t in ,  et al.). F o r  p = 2 the  in degree  
o f  (6(x,z~, En) is four  i f  n is even and  two if  n is odd.  

Corollary 3b. The in degree  o f  (3(~,e_~), En) is p2 i f  n is even and  p i f  
n is odd .  

F o r  the  t r inomia l  a u t o m a t a  the equa t ions  A~.y,z)(/e)= O b e c o m e  

x/e, +y/e~ + z/e2 = 0 

x/el + y/e2 + 2"/3, 3 --'~ 0 

�9 �9 �9 ( 3 . 5 )  

x/x~_2 + Y/e. 1 + z/e~ = 0 

x/e.-1 + y/e,~ + z/el = 0 



Entropy of Additive Cellular Automata 1393 

These have solutions in terms of /x l  and /x2, assuming satisfaction of 
constraints: 

Theorem 4. The solution of (3.5) is given by txi=Aitxl+Bilz2 with 
A1 = B2 = 1, A2 = B1 = 0, while for i->3 and {a} the least integer greater 
than or equal to a, 

{(i--3)/2} 
r-[(i j -2){  - l . r ' ~ j + l ( n _ _ 2 - 1 y ) i  2j 3 Ai = ~ x a i - 2 j - z k P - - Z  "~'! ~,F 

;=0 (3.6) 
{(i--2)/2} 

Bi ~ (i--j 1) --1 j z - l y ) i - 2 q - 2  = II~_2j_l(p-z x) ( p -  
j = 0  

subject to constraints An+l = 1, Bn+l = 0. I f  these constraints are satisfied, 
there are p2 solutions. I f  they are not satisfied, the only solution is 0. 

Proof Equations (3.5) yield/z~ = (p - z-lx)/zi_2 + (p - z-ly)tx~_l. This 
is iterated backward until /zi is expressed in terms of /Zl and ~2- The 
coefficients A~ and Bi are found to satisfy recursion relations 

A ~ = ( p - z - l x ) B , _ l ,  B~=(p-z-ly)B~_I+A~_I 

and the constraints arise through the periodic boundary  conditions. �9 

Corollary 4. I f p  = 2, then (A, En) has in degree 1 unless 3In, in which 
case the in degree is 4. 

Since the entropy of a cellular automaton gives a measure of  the number  
of  reachable states at any point in the automaton evolution, information 
on in degrees can be used to study the entropy-decreasing property. 

Lemma 4. Let (Q, En) be a finite nearest neighbor additive cellular 
automaton and denote the in degree of a s ta te/z  by d~)(tz) , taking this as 
0 for states not having predecessors. Then 

Y d~~ = p "  (3.7) 
~EEn 

Proof The out degree of every state is equal to 1, so that the sum over 
out degrees is the number  of  states in E, ,  which is p". But every edge of 
the state transition diagram directed out of  a vertex must terminate on some 
other vertex, and every edge directed into a vertex must have originated on 
a vertex. Hence the sum of  in degrees must equal the sum of out degrees. �9 

Lernma 5. Let the matrix Q* have nullity v(Q*).  Then for all /x in E,  
having predecessors, d~i)/.~ = p~(O*). 

Proof I f  ~ has predecessors, then d~i)(/.~) = d~)(O) and this is just the 
number  of  solutions of  Q*(~)  = O. The number  of  components  of  ~ which 
act as free parameters in the general solution is, by standard theorems of 
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linear algebra, v(Q*). Each free parameter can take values 0, 1 , . . . ,  p - 1, 
so the lemma follows. �9 

Let E ~  ) be the subset of states in E,  which do not have predecessors, 
E ~  ) be the subset of states having predecessors, with N (~ and N (v) the 
respective numbers of  states in these two sets. By Lemma 4, d(i)N (p) =pn. 
Hence, by Lemma 5, 

N(p) = p,-~(o*) 
(3.8) 

N (~ =p~(1 _p-~(o*~) 

and the fractions of states in E~  ) and E ~  ) are given by 

%(E~)) =p-~(o*) 
(3.9) 

%(E~  )) = 1 _p-~(o*) 

Taking a(n) as the maximum tree height, Lemmas 1 and 3 indicate 
that the p" states of (O, En) will partition into sets of [d(i)] "(n) states, each 
set constituting a tree rooted on a cycle or fixed point of Q. Thus, we have 
the following result. 

Theorem 5. The number of  states on cycles of (Q, En), counting fixed 
points as cycles of period 1, is given by p~-~(~>(o*). The number of states 
which can have no predecessors after t iterations is p--,~(o*) for t < a. 

On the basis of this theorem, the entropy formulas of Wolfram (1983) 
and Martin et al. (1984) can be generalized. Taking the normalized measure 
entropy 

S( t )=(n log2P)  ~ 2 P,(/z)logzP,(/x)  (3.10) 
/xcEn 

where P,(/.~) is the probability of state/x after t iterations of Q, yields the 
entropy evolution formula 

1 - tp(Q*)/n, 0 < - t < a(n) 
S ( t ) =  1 - a ( n ) v ( Q * ) / n ,  t>_a(n) (3.11) 

The fractional change in S(t) per time step for t < a ( n )  is given by 
a - ~ [ S ( t + l ) - S ( t ) ] = - v ( Q * ) / n a ( n ) .  Thus, the nullity of the matrix Q* 
appears as a discrete analogue of the rate of  change of entropy. Noting 
that Lemma 5 implies p(Q*) = logp d (~ and recalling the results of Theorems 
3-5, one obtains formulas for the nullity of  the various nearest neighbor 
additive operators: 

Theorem 6. 

~p, (p - z ly) ,  _= 1 mod(p)  
p( V(y,z)) = lJ( V~x,y)) = ~ [0, otherwise (3.12) 
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fp2,  n even, ( p - z - i x )  "-= 1 mod(p)  

v(a~x,z) l n = p, odd, (p z-ix) "~1  mod(p)  (3.13) 

0, otherwise 

= [p2, A,+t = 1, B,+I = 0  (3.14) 
v(&~,~,~) [0,  otherwise 

As a result of  this theorem, only certain cellular automata are seen to 
decrease entropy, namely those for which v(Q*) ~ O. By (3.11), the entropy 
for these automata,  with n = pmno and a(n) = pro, evolves according to the 
formula 

S( t) = { i - tv( Q*)/pmno, 
- v(Q*)/no, 

O<_t<p m 
(3.15) 

pm<__t 

and the final value of this entropy is independent of  m. 

4. D I S C U S S I O N  

In the previous section only finite automata  have been considered. 
Certain of  these automata,  namely those for which v(Q*) ~ O, were shown 
to have the property that their entropy decreased, reaching a lower bound 
after a finite number  of  iterations. Lind (1984), on the other hand, has 
demonstrated that all infinite additive cellular automata  have constant 
entropy. This seems to present a contradiction, since a finite automaton 
(Q, E,)  can be naturally embedded in the infinite automaton (Q, E § by 
taking the subset E~ of  E § consisting of all periodic elements with period 
a divisor of  n. Further, at least for those operators which are not dependent  
on 0 --2 , the cycle properties of  this embedded automaton are the same as 
for the original. That is, if the entropy of (Q, E~) decreases with automaton 
evolution, then the entropy of  (Q, E ,  +) will also decrease. Further, this 
property is independent  of  n. That is, the entropy of (Q, E § remains 
constant even though the entropy, evaluated over the set ~-Jalln E~ of  all 
periodic elements of  E § decreases. 

The resolution of  this question follows by noting that E § maps to the 
unit interval [0, 1] when elements are taken as binary expansions in powers 
of  2 -1 . With this mapping  all periodic or eventually periodic sequences map 
to rational numbers,  and all other sequences map to irrationals. It can be 
shown (Voorhees, 1989) that only those sequences which are eventually 
periodic can be predecessors of  states on cycles. The entropy-decreasing 
property of  finite automata  is a manifestation of the fact that for certain of  
these automata  not all states lie on cycles, but all states map to cycles. Since 
entropy is computed over the ensemble of  all states, the entropy of an 
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infinite automaton does not decrease, because the states corresponding to 
irrational numbers in [0, 1] do not map to cycles. That is, entropy decreases 
on at best a countable dense subset of E +, and this, having measure zero, 
does not contribute to the total ensemble average. On the other hand, since 
all binary computations involve only terminating sequences, entropy- 
decreasing properties on this subset may be of significance. 
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